4 resultados para critical period

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The late Carboniferous to Permian is a critical period for final amalgamation of the Central Asian Orogenic Belt (CAOB), which is characterized by voluminous igneous rocks, particularly granitoids. The Kekesai composite granitoid porphyry intrusion, situated in the Chinese western Tianshan (southwest part of CAOB) includes two intrusive phases, a monzogranite phase, intruded by a granodiorite phase. LA-ICPMS U-Pb zircon analyses suggest that the monzogranitic rocks formed at 305.5±1.1 Ma, with a wide age range of inherited zircons (358-488 Ma and 1208-1391 Ma), whereas the granodioritic rocks formed at 288.7±1.5 Ma. The monzogranitic and granodioritic phases have similar geochemical features and Sr-Nd-Hf isotopic compositions. They exhibit high and variable SiO2 (66-71 wt.%) and MgO (0.41-2.14 wt.%) contents with some arc-like geochemical characteristics (e.g., enrichment of large ion lithophile elements and negative anomalies of Nb, Ta and Ti) and relatively high initial 87Sr/86Sr ratios (ISr=0.7055-0.7059), low positive eNd(t) (+0.84 to +1.03) as well as a large variation in Hf isotopic compositions with eHf(t) between +3.43 to +14.8, implying both of them were derived from similar source materials. These geochemical characteristics suggest that they might be mainly derived from the partial melting of arc-derived Mesoproterozoic mafic lower crust with involvement of a mantle-derived component in variable proportions by mantle-derived magma underplating. The presence of late-Ordovician to earliest early Carboniferous inherited zircons and the Hf isotopic compositions in the monzogranitic sample, similar to that of the widespread juvenile arc rocks, indicates some crust contamination during magma emplacement. Our new data, combined with previous studies, imply that extensive post-collisional magmatism due to underplating of mantle-derived magma, could plausibly be explained by slab break-off regime.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Benthic foraminiferal stable carbon isotope records from the South Atlantic show significant declines toward more "Pacific-like" values at ~7 and ~2.7 Ma, and it has been posited that these shifts may mark steps toward increased CO2 sequestration in the deep Southern Ocean as climate cooled over the late Neogene. We generated new stable isotope records from abyssal subantarctic Pacific cores MV0502-4JC and ELT 25-11. The record from MV0502-4JC suggests that the Southern Ocean remained well mixed and free of vertical or interbasinal d13C gradients following the late Miocene carbon shift (LMCS). According to the records from MV0502-4JC and ELT 25-11, however, cold, low d13C bottom waters developed in the Southern Ocean in the late Pliocene and persisted until ~1.7 Ma. These new data suggest that while conditions in the abyssal Southern Ocean following the LMCS were comparable to the present day, sequestration of respired CO2 may have increased in the deepest parts of the Southern Ocean during the late Pliocene, a critical period for the growth and establishment of the Northern Hemisphere ice sheets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physiological condition of larval Antarctic krill was investigated during austral autumn 2004 and winter 2006 in the Lazarev Sea, to provide better understanding of a critical period of their life cycle. The condition of larvae was quantified in both seasons by determining their body length (BL), dry mass (DM), elemental- and biochemical composition, as well as stomach content analysis, and rates of metabolism and growth. Overall the larvae in autumn were in better condition under the ice than in open water, and for those under the ice there was a decrease in condition from autumn to winter. Thus growth rates of furcilia larvae in open water in autumn were similar to winter values under the ice (mean 0.008 mm/d), whereas autumn, under ice values were higher: 0.015 mm/d. Equivalent larval stages had up to 30% lower BL and 70% lower DM in winter compared to autumn, with mean oxygen consumption 44% lower (0.54 µl O2 DM/h). However, their ammonium excretion rates doubled (from 0.03-0.06 µg NH4 DM/h) so their mean O:N ratio was 46 in autumn and 15 in winter. Thus differing metabolic substrates were used between autumn and winter, suggesting a flexible overwintering strategy, as suggested for adults. The larvae were eating small copepods (Oithona spp.) and/or protozoans as well as autotrophic food under the ice. However, pelagic Chlorophyll a (Chl a) was a good predictor for growth in both seasons. The physics (current speed/ice topography) probably has a critical part to play in whether larval krill can exploit the food that may be associated with sea ice or be advected away from such suitable feeding habitat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mid-Piacenzian (MP) warm period (3.264-3.025 Ma) has been identified as the most recent time in geologic history during which mean global surface temperatures were considerably warmer than today for a sustained period. This interval has therefore been proposed as a potential (albeit imperfect) analog for future climate change and as such, has received much scientific attention over the past two decades. Central to this research effort is the Pliocene Research, Interpretation, and Synoptic Mapping (PRISM) project, an iterative paleoenvironmental reconstruction of the MP focused on increasing our understanding of warm-period climate forcings, dynamics, and feedbacks by providing three-dimensional data sets for general circulation models. A mainstay of the PRISM project has been the development of a global sea surface temperature (SST) data set based primarily upon quantitative analyses of planktic foraminifer assemblages, supplemented with geochemical SST estimates wherever possible. In order to improve spatial coverage of the PRISM faunal data set in the low and mid-latitude North Atlantic, this study provides a description of the MP planktic foraminifer assemblage from five Ocean Drilling Program sites (951, 958, 1006, 1062, and 1063) in the subtropical gyre, a region critical to Atlantic Ocean circulation and tropical heat advection. Assemblages from each core provide evidence for a temperature- and circulation-driven 5-10° northward displacement of MP faunal provinces, as well as regional shifts in planktic foraminifer populations linked to species ecology and interactions. General biogeographic trends also indicate that, relative to modern conditions, gyre circulation was stronger (particularly the Gulf Stream, North Atlantic Current, and North Equatorial Current) and meridionally broader. A comparison of mid-Piacenzian and modern North Atlantic planktic foraminifer assemblages suggests that low latitude western boundary currents were less than 1 °C warmer while eastern boundary currents were ~1-2 °C warmer, supporting the hypothesis of enhanced northward heat advection along western boundary currents and warming of high latitude Northeast Atlantic source regions for the Canary Current. These findings are consistent with a model of reduced meridional SST gradients, with little-to-no low latitude warming, and more vigorous ocean circulation. Results therefore support the theory that enhanced meridional overturn circulation and associated northward heat advection made an important contribution, in conjunction with elevated atmospheric CO2 concentrations, to the 2-3 °C global surface temperature increase (relative to today) and strong polar amplification of SST warmth during the MP warm period.